## Transforming Program Integrity with Identity and Fraud Analytics

**Clint Fuhrman, Senior Director, Healthcare** 

August 20, 2013



**Risk Solutions** 

# **Market Challenges & Trends**

Administrative Unprecedented risks with EMR adoption, HIEs, ACOs and patient centered medical OPECTAL Frank Rules (CMS 6028-FC) on new provided and screening Sharing of Medical Electronically **PPACA-mandated** HIPAA 5010, ICDatient Protection and Affordable Care Act (ACA) requirements xchanges 10 IRS and Interest in Big Data & Analytics opportunities Stricter Medical Loss Ratio HIPAA Privacy, Security, Enforcement, and Breach Notification Rules Medicaid \$2.6 trillion in health care costs **Expansion** (MLR) requirements Questionable claims Health Care Fraud Statute (18 U.S.C. §1347) 1.5 million medical identity theft victims Limited Improposer for # of Consumers Entering Health Care investigations abor-intensive costly recovery Higher insurance Outdated data and incorrect ms Pursuit to reduce costs Data security and breaches HIPAA Privacy, Security, Enforcement, and Breach Notification Rules



## How You Locate Fraud And Abuse Today





## Bringing it All Together: A Comprehensive Model to Detect and Prevent FWA





## **Overview of an Identity Risk Solutions Provider**

#### Assesses the risks and opportunities associated with people, businesses and assets.





Through proprietary inking technology, profiles have been built on over 500 million identities. These databases have in excess of 45,000 data sources providing these updates as frequently as each data provider allows including daily, bi-weekly, weekly and monthly that include, but is not limited to:

- Tri-bureau Credit Header data
- Traditional landline and wireless Phone data
- Utility Files
- Concealed Weapons Permits
- Firearms & Explosive Licenses
- Corporation Filings
- Criminal and Court Records
- Department of Corrections data
- Real Property Deed & Mortgages
- Property
- Professional Licenses
- Tax Liens & Judgments
- Planes & Pilots
- Hunting & Fishing Licenses

- UCC Filings
- Assessment
- DEA Controlled Substance Licenses
- Medical Licenses, Certification
- Sanction and Exclusion
- NPI
- Vehicle Registrations
- SEC Filings
- Foreclosures
- Deaths
- Marriages and Divorce Records
- Education Records
- Various Contributory Data Sources
- Watercraft

## Big Data Technology is Utilized to Establish Identity



- High Performance Computing Cluster Platform (HPCC) enables data integration on a scale not previously available and real-time answers to millions of users. Built for big data and proven for 10 years with enterprise customers.
- Offers a single architecture, two data platforms (query and refinery) and a consistent data-intensive programming language (ECL)
- ECL Parallel Programming Language optimized for business differentiating data intensive applications

In real-time, data from tens of thousands of disparate sources can be brought together to form a multifaceted view that can enable health care payers to resolve, verify, and authenticate identity with 99.9% confidence





# Big Data technology fuses the messy, disparate, incorrect input data into single identities



| SSN       | DOB  | NAME            | ADDRESS                 | СІТҮ          | STATE | ZIP   |
|-----------|------|-----------------|-------------------------|---------------|-------|-------|
| ***801594 |      | Shannan Weschek | 25 Franklin PL          | Miami         | FL    | 33101 |
| ***801591 | 8/77 | Shannan Smith   | 114 W. 19 <sup>th</sup> | Boca<br>Raton | FL    | 33429 |
|           | •    | •               |                         |               |       |       |



| LexID #    | SSN       | DOB      | NAME              | ADDRESS                 | CITY          | STATE | ZIP   |
|------------|-----------|----------|-------------------|-------------------------|---------------|-------|-------|
| 1275602253 | ***801591 |          | Shannan Yeschek   | 25 Franklin PL          | Miami         | FL    | 33101 |
| 1275602253 | ***801591 | 19770800 | Shannan Smith     | 114 W. 19 <sup>th</sup> | Boca<br>Raton | FL    | 33429 |
| 1275602253 | ***801594 | 00000811 | Shannan Yeschek   | 15 E. Broad Street      | Boston        | MA    | 02134 |
| 1275602253 | ***801591 | 19770811 | Shannan R Yeschek | 114 W. 19 <sup>th</sup> | Boca<br>Raton | FL    | 33429 |
| 1275602253 | ***801591 | 19770800 | Shannan Smith     | 25 Franklin PL          | Miami         | FL    | 33101 |
| 1275602253 | ***801591 | 00770811 | Shannan R Smith   | 15 E. Broad Street      | Boston        | MA    | 02134 |
| 1275602253 | ***801591 | 197708   | Shannan Yeschek   | 25 Franklin PL          | Miami         | FL    | 33101 |



**Examples From Real Data Sets** 



| SSN         | Last_Name | First_Name | Street Address     | Apt      | City     | St |
|-------------|-----------|------------|--------------------|----------|----------|----|
| 392-80-XXXX | SMEJXXX   | DONALD     | 13XX SPRINGXXXX DR | 101      | Anywhere | XX |
| 218-32-XXXX | HALEXXXXX | Richard    | 13XX SPRINGXXXX DR | 102      | Anywhere | XX |
| 560-40-XXXX | HALXXXXX  | К          | 13XX SPRINGXXXX DR |          | Anywhere | XX |
| 022-56-XXXX | WOJXXXXX  | DUSTIN     | 13XX SPRINGXXXX DR | 3E       | Anywhere | XX |
| 436-14-XXXX | BRYXXXX   | BERTHA     | 13XX SPRINGXXXX DR | 202      | Anywhere | XX |
| 532-49-XXXX | HALLXXXXX | КАҮ        | 13XX SPRINGXXXX DR | basement | Anywhere | XX |
| 532-59-XXXX | HALLXXXXX | К          | 13XX SPRINGXXXX DR |          | Anywhere | XX |
| 544-09-XXXX | CARXXX    | ТОМ        | 13XX SPRINGXXXX DR | 101      | Anywhere | XX |
| 544-08-XXXX | CARXXX    | ТОМ        | 13XX SPRINGXXXX DR | 103      | Anywhere | XX |
| 545-05-XXXX | POLXXX    | MARK       | 13XX SPRINGXXXX DR | 117      | Anywhere | XX |
| 545-50-XXXX | POLXXX    | MARK       | 13XX SPRINGXXXX DR |          | Anywhere | XX |
| 566-34-XXXX | CROWXXX   | REBEL      | 13XX SPRINGXXXX DR |          | Anywhere | XX |
| 566-45-XXXX | VINXXX    | MATTXXX    | 13XX SPRINGXXXX DR | 3G       | Anywhere | XX |
| 602-59-XXXX | DEOXXXXX  | ILICIA     | 13XX SPRINGXXXX DR |          | Anywhere | XX |



|             |           |            |                    |          |          |    |             |              |                  | $\backslash$                          |               |
|-------------|-----------|------------|--------------------|----------|----------|----|-------------|--------------|------------------|---------------------------------------|---------------|
| SSN         | Last_Name | First_Name | Street Address     | Apt      | City     | St | Best_SSN    | Possible Age | ISeen at Address | SSN E                                 | Date of Death |
| 392-80-XXXX | SMEJXXX   | DONALD     | 13XX SPRINGXXXX DR | 101      | Anywhere | XX |             |              | Not at Address   |                                       | 20081225      |
| 218-32-XXXX | HALEXXXXX | Richard    | 13XX SPRINGXXXX DR | 102      | Anywhere | XX |             | 00           | Not at Address   | L L L L L L L L L L L L L L L L L L L | 19841100      |
| 560-40-XXXX | HALXXXXXX | К          | 13XX SPRINGXXXX DR |          | Anywhere | XX |             | 75           | Not at Address   |                                       | 19851200      |
| 022-56-XXXX | WOJXXXXX  | DUSTIN     | 13XX SPRINGXXXX DR | 3E       | Anywhere | XX |             |              | Not at Address   |                                       |               |
| 436-14-XXXX | BRYXXXX   | BERTHA     | 13XX SPRINGXXXX DR | 202      | Anywhere | XX | 555-96-XXXX | 75           | Not at Address   | SSN not found in the public record    |               |
| 532-49-XXXX | HALLXXXXX | КАҮ        | 13XX SPRINGXXXX DR | basement | Anywhere | XX | 562-42-XXXX | 10           | Not at Address   |                                       |               |
| 532-59-XXXX | HALLXXXXX | К          | 13XX SPRINGXXXX DR |          | Anywhere | XX | 562-42-XXXX | 5            | Not at Address   | SSN not found in the public record    |               |
| 544-09-XXXX | CARXXX    | ТОМ        | 13XX SPRINGXXXX DR | 101      | Anywhere | XX |             | 7 75         | Not at Address   |                                       |               |
| 544-08-XXXX | CARXXX    | ТОМ        | 13XX SPRINGXXXX DR | 103      | Anywhere | XX |             |              | Not at Address   |                                       |               |
| 545-05-XXXX | POLXXX    | MARK       | 13XX SPRINGXXXX DR | 117      | Anywhere | XX | 429-02-XXXX | 75           | Not at Address   | SSN not found in the public record    |               |
| 545-50-XXXX | POLXXX    | MARK       | 13XX SPRINGXXXX DR |          | Anywhere | XX | 429-02-XXXX | 58           | Not at Address   |                                       |               |
| 566-34-XXXX | CROWXXX   | REBEL      | 13XX SPRINGXXXX DR |          | Anywhere | XX | 560-82-XXXX | 75           | Not at Address   |                                       |               |
| 566-45-XXXX | VINXXX    | MATTXXX    | 13XX SPRINGXXXX DR | 3G       | Anywhere | XX |             |              | Not at Address   |                                       |               |
| 602-59-XXXX | DEOXXXXX  | ILICIA     | 13XX SPRINGXXXX DR |          | Anywhere | XX | 602-59-XXXX |              | Not at Address   |                                       |               |
|             |           |            |                    |          |          |    |             |              |                  |                                       |               |

K's two children

None of these identities are seen as living at this address K's dead mother

### It was a trick – they were all fraud.

A single family home has been turned into an apartment building.





## **Prisoners Doing What Prisoners Do**





## Stolen Identity with Address Issues



lives in Chicago and the address is not valid



**Key Challenge:** Commercial, government and non-profit organizations are seeking to provide controlled, secure access to their products, services and information



**MORE RISK** 



ENROLLMENT ASSESSMENT

| ſ | DISCOVER     | <b>Discover the identity</b><br>Undertake data capture, identity resolution and identity<br>enrichment.<br><i>"Tell us who you are."</i>                      |
|---|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | VERIFY       | <b>Verify the identity</b><br>Establish that the identity exists.<br>" <i>Does Bob Jones exist?</i> "                                                         |
|   | AUTHENTICATE | <b>Authenticate the identity</b><br>Determine whether an individual or business owns the identity.<br><i>"Are you Bob Jones?</i> "                            |
| ſ | EVALUATE     | <b>Evaluate the identity</b><br>Assess against legislation, regulations and rules to determine if an<br>individual or business meets regulatory requirements. |
|   | ALERT        | Alert to identity changes<br>Receive notification when an individual or business is exhibiting<br>high-risk behavior (continuous evaluation).                 |



| In what county do you currently live?                                          |
|--------------------------------------------------------------------------------|
| OHouston                                                                       |
| ○ Forsyth                                                                      |
| ○ Troup                                                                        |
| O Douglas                                                                      |
| ○ None of the above                                                            |
| In what state was your Social Security Number issued?                          |
| О ок                                                                           |
| Оку                                                                            |
| O VA                                                                           |
| ○ PA                                                                           |
| O None of the above                                                            |
| In which of the following cities have you NEVER lived or used in your address? |
| O Louisville                                                                   |
| OHermitage                                                                     |
| O New Hope                                                                     |
| O Mc Cordsville                                                                |
| O All of the above                                                             |

#### Feature Highlights

- Dynamic knowledge-based authentication (KBA)
- Public records driven question/answer solution
- Does not use credit file information non FCRA
- Multiple configuration options and language offerings
- Numerous question type options
- Can integrate with customer supplied data

#### **Key Benefits**

- Increases identity assurance during account setup and other high risk activities
- Allows authentication efforts to be uniform across customer contact channels
- Reduce fraud during high risk transactions

The Florida Department of Children and Families is the first state in the country to implement automated identity verification and authentication within its online ACCESS eligibility portal. The state estimates a 3X ROI and potential savings of \$60 million.



- Initial Verification of Member Contact Information
  - Can provide monthly data feed with new Medicaid member contact information to ensure they have the most current information *before* they do initial outreach, improving member experience and contact success from the very beginning
  - Can provide monthly data feed with existing member information on monthly basis to capture changes in contact information as quickly as possible with as little inconvenience to the member as possible
- Member Surveys
  - Distributing member surveys to targeted populations to identify services that may have been received in locations other than a primary care provider's office
- Maximizing Personnel Resources
  - Corrected phone information reduces the amount of time required to conduct phone blast campaigns, making this a more effective outreach program than it had been in the past
- HEDIS/Medicare Five Star Rating Program for MCO's

A recent analysis of a Medicaid Managed Care plan member file produced a 35% improvement in current address information



# LN-HRA-SUNY Study: Flag Performance

Property, luxury vehicles strongly predict successful investigations

Luxury vehicle cases take 25% less time to investigate

- Business activity less successful predictor
- Mortgage activity very poor predictor
- •4.6% of new enrollees have one of these flags

Extrapolation: 2.3% to 3.4% of NYC new Medicaid enrollees could be successfully investigated with these flags









# LN-HRA-SUNY Study: Streamlined Investigation

•Reduces investigation time by 21%

- •Reduces costly interviews by 56%
- •Reduces success rate by 30%
- •Next step: predict when simpler method can be used



## LN-HRA-SUNY Study: LN Scoring System

- At the Study's onset, LN proposed a scoring system
- LN assigned a score of 300 to 999, with a score of 620 or lower indicating "Medium Risk" or "High Risk."
- The score was based on 10 flags of potential fraudulent activity and 4 flags of mitigating circumstances (such as declaring bankruptcy).

•Of 125,000 new Medicaid enrollees, 3% were classified as "high risk" and 18% were classified as "medium risk."



## LexisNexis-HRA- SUNY Study: LN Scores

| Value of Risk Score | Predicted Probability of |
|---------------------|--------------------------|
|                     | Investigations Success   |
| 520 (High Risk)     | 66.4%                    |
| 600 (Medium Risk)   | 52.7%                    |
| 680 (Low Risk)      | 38.8%                    |

•Moving from the Low Risk to the High Risk group predicts an 28 point increase in the probability of investigative success, an improvement of 71%

•Conclusion: the proposed scoring rule offers substantial improvements over random selection of cases with key risk flags.



Program Integrity begins with knowing your providers

Screen all current in-network providers
Implement robust provider validation and evaluation in addition to
credentialing
Assign dynamic risk scores and track provider files between credentialing
periods for pertinent activity; alerts generated for changes

Extend screening standards to include providers within managed care



# 90% of your Big Data Problem, isn't Big Data. It's the ability to handle Big Data for better insight.



# **<u>Big Data</u>**: Datasets whose size is beyond the ability of typical database software tools to capture, store, manage and analyze



- Disparate data is spread across separate physical locations
- Scale of data Is huge...and growing every day
- Adding relationships exponentially expands the size of the BIG Data analytics challenge.
- The amount of data available is more than the human mind can organize and use, but too valuable to ignore ...\$300B??



Copyright © 2012 LexisNexis. All rights reserved

# Social Network Analytics Helps Make Sense of Big Data

- Social Network Analysis identifies relationship clusters leveraging "big data" and advanced linking to reveal the relationships that criminal networks try so hard to keep hidden, enabling the effective investigation and termination of insidious and costly fraud rings
- Social Network Analytics can reveal
  - Patient relationships with known perpetrators of health care fraud
  - Links between recipients, businesses, and assets, as well as relatives and associates
  - Links between licensed and non-licensed providers
  - Suspect relationships of employees, suppliers, and partners with patients and providers



# **Trends in Social Network Analysis**

## Addition of External Data



- Mixes First Party data with Public and Third Party data sources
- Adds fidelity to existing entities
- Adds new linkages into the analysis
- Ads new entities into the analysis
- Exposes ring leaders and brokers that don't directly participate



Applied relationship analytics to information provided by a large state and public data supplied by LexisNexis to identify relationships between a group of the State's Medicaid recipients living in high-end condominiums located within

the same complex and any links those individuals might have to medical facilities or others providing care for other Medicaid recipients in the State.



## Social Network Analysis: Example 1

## "Condo X" Sample: Vehicle Statistics

#### What is the list of preferred expensive vehicles owned by members?

| Make Description | # Owned | Make Description | # Owned |
|------------------|---------|------------------|---------|
| Mercedes-Benz    | 46      | Chevrolet        | 2       |
| Lexus            | 41      | Hummer           | 2       |
| BMW              | 27      | Jeep             | 2       |
| Infiniti         | 13      | Nissan           | 2       |
| Acura            | 9       | Toyota           | 2       |
| Lincoln          | 8       | Aston Martin     | 1       |
| Audi             | 7       | Bentley          | 1       |
| Land Rover       | 7       | Cadillac         | 1       |
| Porsche          | 6       | GMC              | 1       |
| Jaguar           | 5       | Honda            | 1       |
| Mercedes Benz    | 3       | Volkswagen       | 1       |
| Saab             | 3       | Volvo            | 1       |



#### **Property Deed Reference Counts for Residence**

Dominant buyers and sellers at "Condo X"

| Name         | Deeds Held | Name     | Deeds Held |
|--------------|------------|----------|------------|
| Person A8    | 78         | Person H | 21         |
| Person A5    | 74         | Person I | 21         |
| Person A1    | 73         | Person J | 21         |
| Person A9    | 65         | Person K | 19         |
| Person B     | 45         | Person L | 17         |
| Person A10   | 41         | Person M | 16         |
| Person A7    | 39         | Person N | 16         |
| Business One | 33         | Person O | 15         |
| Person A3    | 33         | Person P | 14         |
| Person C     | 28         | Person Q | 14         |
| Person D     | 25         | Person R | 14         |
| Person E     | 24         | Person S | 14         |
| Person F     | 23         | Person T | 14         |
| Person G     | 23         | Person U | 14         |
| Business Two | 21         | Person V | 13         |



# **Cluster Visualization Introduction**



- 1. Detection and Visualization of a large cluster containing associated active Medicaid recipients who have unusual lifestyle data points. Note: Slick Willy and his icons for vehicle, residence and property.
- 2. Zoomed in view of Slick Willy to see his vehicles and his relationship to business contacts of Medical Business Entities and other Medicaid Recipients.
- 3. Prima Donna, lives at expensive residence, owns expensive property, owns expensive vehicles and is a business contact of a medical business entity. Her cluster is connected adjacently to the Slick Willy cluster.



## Social Network Analysis: Example 2, Florida





## Social Network Analysis: Example 2, Florida



2009 Acura RL White (base price \$50K)

Medicaid Beneficiary

**Registered Provider** 

Numerous Medical Business Ownerships (discussed below)

#### **Exclusions & Sanctions**

02/20/2006 DHS: Debarred / Excluded

09/14/2006 OPM: Debarred / Suspended



# Social Network Analysis: Example 2, Florida

Clusters of interesting asset variables in tight social networks are often associated with coordinated activities.

- 3 Billion Public Data Relationships
- Leverage SNA Intelligence
- Identifying the key actors and activities

### Example Interesting Vehicles

### Example Interesting Residences

| (2010) Red F<br>(\$ 44,750), (                                   | errari Ca<br>2010) Bla | alifornia (\$<br>ack GMC K | 5192,000), (2009) E<br>(1500 SLT Sierra (\$ | Black GMC SLT Yukon<br>41,775), (2011) | D       |                | 15     | [CITY] | \$167,000.00 |
|------------------------------------------------------------------|------------------------|----------------------------|---------------------------------------------|----------------------------------------|---------|----------------|--------|--------|--------------|
| Mercedes-Benz E350 (\$ 494,00), (2009) Black Mercedes-Benz AMG   |                        |                            |                                             |                                        |         | м              | 60     | [CITY] | \$499,000.00 |
| (2011) White Audi 5.2 QUATTRO R8 (\$161000), (2011) White BMW    |                        |                            |                                             |                                        | G       | ŗ              | 23     | [CITY] | \$670,000.00 |
| (2010) Black Mercedes-Benz S600 (\$149700), (2010) Mercedes-Benz |                        |                            |                                             |                                        | G       | N              | 76     | [CITY] | \$550,000.00 |
| (2010) White Mercedes-Benz AMG CL63 (\$145200)                   |                        |                            |                                             |                                        | G       | RO             | 22     | [CITY] | \$489,000.00 |
| G, <b>A</b>                                                      | 43                     | [CITY]                     | \$800,000.00                                | (2009) Red Audi 4                      | 4.2 QU/ | ATTRO R8 (\$11 | L2500) |        |              |



## Numerous close associates also operating medical businesses





## Case Study: Turning Big Data into Actionable Intelligence



| Name: A CS<br>Address:                        |  |
|-----------------------------------------------|--|
| Name: A ES INC.<br>Address:                   |  |
| Name: AF <b>ree NC</b> .<br>Address:          |  |
| Name: AP <b>ress CY</b><br>Address:           |  |
| Name: E<br>Address:                           |  |
| Name: INTE <b>ntropy of CE</b><br>Address:    |  |
| Name: JO <b>ne (1997)</b> UNT<br>Address:     |  |
| Name: Mlane ACY<br>Address:                   |  |
| Name: Pl <b>ense and State NC</b><br>Address: |  |
| Name: Solution RP.<br>Address:                |  |



## Identity Analytics and Predictive Modeling Workflow





## Bringing it All Together: A Comprehensive Model to Detect and Prevent FWA





## **Contact Information:**

**Clint Fuhrman** Senior Director, Healthcare LexisNexis Risk Solutions Clint.fuhrman@lexisnexis.com 202.503.6639

Linked In Group: LexisNexis Health Care Solutions Twitter: @LexisHealthCare Blog: http://blogs.lexisnexis.com/healthcare/



